PHARMACOLOGY 101:
MECHANISM AND TARGETS IN MEDICAL ONCOLOGY

Lindsay Williamson
APRN, MSN, AOCNP
Lindsay Williamson is board certified as an Advanced Oncology Certified Nurse Practitioner as well as an Adult Nurse Practitioner. She received her BSN at West Chester University in West Chester, Pennsylvania and her MSN at La Salle University in Philadelphia, Pennsylvania. Lindsay has been an Oncology Nurse for 19 years with 11 of those years in the role of Nurse Practitioner. She has worked in a variety of settings including inpatient and outpatient as well as community based and academic based. Also, she has worked in a variety of roles including Oncology Staff Nurse, Infusion Nurse, ARNP in a community practice, Pharmaceutical Sales Representative and Clinical Operations Manager of the Lab Draw and Infusion areas at Moffitt Cancer Center. She is currently pursuing her DNP and teaching nursing students at St. Petersburg College and Pinellas Technical College.
Financial Disclosure

No financial disclosures exist
Objectives

- To define the purposes of cancer therapy
- To describe the differences among cancer therapies
- To have a basic understanding of the mechanisms of actions of chemotherapy, hormone therapy, targeted therapies, and immunotherapy
- To have a basic understanding of common toxicities for cancer treatments
- To have an understanding of available resources for information regarding cancer therapies
Cancer treatment
Cancer therapy

• Cure
 • No evidence of disease (NED)

• Control
 • Prolong length and quality of life, prevent distant and possible unknown metastases
 • Cure is not realistic

• Palliation/Comfort
 • Symptom management, improve comfort and quality of life
 • Appropriate when cure and control are not feasible

• Systemic Treatment types
 ➢ PO, IV, IM, SQ, IT

• Combination therapy

• Treatment considerations
 • Neoadjuvant
 • Adjuvant
 • Induction
 • Maintenance
 • Metastatic
 • Radio sensitizer
Cancer Therapy Agents

- Chemotherapy
- Hormonal Therapy
- Immunotherapy
- Therapeutic Antibodies
- Antibody-Drug Conjugates
- Kinase Inhibitors
- Other
Common Cancer Therapy Side Effects

- Fatigue
- Myelosuppression
- Nausea/Vomiting
- Diarrhea/Constipation
- Mucositis
- Peripheral Neuropathy
- Alopecia
- Immune-mediated pneumonitis, hepatitis, colitis, endocrinopathies and rash
- Oncology Emergencies
Cancer Therapy Limitations

- Toxicity of agents
- Lifetime dose
- Hypersensitivity reactions
- Drug resistance
- Secondary malignancies
- Adherence
- Insurance Authorization
- Patient cost
Chemotherapy

- Treatment of cancer cells with chemicals
- Cytotoxic-poisonous to cells
Chemotherapy

<table>
<thead>
<tr>
<th>Phase cycle specific agents</th>
<th>Cell cycle specific agents</th>
<th>Cell cycle non-specific agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Only the cells in a specific cycle are affected dividing throughout cycle</td>
<td>Effects are mostly on the cells actively</td>
<td>Effects are on cells at any phase</td>
</tr>
</tbody>
</table>
Chemotherapy Classifications

- Alkylating Agents
- Antimetabolites
- Antimicrotubule Agents
- Topoisomerase I Inhibitors
- Topoisomerase II Inhibitors
- Antibiotic Oncologics
- Asparaginase derivatives
- Hypomethylating Agents
- Other
Alkylating Agents

- Mechanisms of action: Interfere with DNA replication through cross linking of DNA strands, DNA strand breaking, and abnormal base pairing of proteins
- Most agents are cell cycle nonspecific
- Activated by cytochrome p450
- Toxicities: Nausea/Vomiting, Hematopoietic, Reproductive
Alkylating Agents

- Alkyl sulfonates
 - busulfan; CML, Myelofibrosis

- Ethyleneimines
 - thiotepa; Breast, Ovarian

- Nitrogen mustards
 - bendamustine; Given IV; CLL, NHL
 - chlorambucil; HL, NHL, CLL
 - cyclophosphamide; Given IV or PO
 - HL, NHL, MM, CML, AML, Breast
 - ifosfamide; Testicular, Sarcoma
 - melphalan; MM
Alkylating Agents

- Nitrosoureas
 - Most agents cross blood-brain barrier
 - carmustin; Brain, MM, HL, NHL
 - lomustine; oral agent: Brain, HL, NHL
 - streptozotocin; Pancreatic
Alkylating Agents

- Platinum Analogues
 - cisplatin-heavy metal; Testicular, Ovarian, Bladder, Lung
 - carboplatin-2nd generation platinum analogue; Solid tumors
 - oxaliplatin-3rd generation platinum analogue; Colorectal

- Triazenes
 - dacarbazine; HL, Melanoma
 - temozolomide; Brain
Alkylating Agents

- Other
 - procarbazine; HL
Antimetabolites

- Mechanism of action: Inhibit DNA synthesis by substituting metabolites or structural analogues during DNA synthesis.
- Most agents are **phase cycle specific**.
- Toxicities: Hematopoietic and GI.
- Folate Analogs, Purine Analogs, Pyrimidine Analogs, Other.
Antimetabolites

- **Folate Antagonists**
 - methotrexate; Breast, Osteosarcoma, H/N
 - pemetrexed; Lung, Mesothelioma
 - pralatrexate; Peripheral T-cell lymphoma
Antimetabolites

- **Purine Antagonists**
 - cladribine; Hairy Cell Leukemia
 - fludarabine phosphate; CLL

- **Pyrimidine Antagonists**
 - 5 fluorouracil - GI malignancies
 - capecitabine - oral agent; GI, Breast
 - cytarabine; AML
 - fluorouracil; GI, Pancreatic, Breast
 - gemcitabine; Pancreatic, breast, ovarian, Lung
Antimetabolites

- Other
 - hydroxyurea-oral agent; P vera, thrombocytopenia, H/N
Antimicrotubule Agents

- Mechanism of action: Block cell division by preventing microtubule function
- Plant derived
- Toxicities: Peripheral Neuropathy
Antimicrotubule Agents

- Epothilones
 - ixabepilone; Breast

- Halichonrin B analogue
 - eribulin mesylate; Breast, Liposarcoma

- Taxanes
 - paclitaxel; Breast, Ovarian, Lung, Sarcoma
 - albumin-bound paclitaxel; Breast, Pancreatic, Lung
 - cabazitaxel; Prostate
Antimicrotubules

- Vinca Alkaloids
 - vinblastine; HL, Testicular
 - vincristine; HL, NHL, ALL, Solid tumors
 - liposomal vincristine; ALL
 - vinorelbine; Lung, Breast
Topoisomerase I Inhibitors

- Mechanism of action: Interferes with the activity of topoisomerase in the process of DNA replication
- Toxicities: Nausea, vomiting, diarrhea, abdominal cramping.
Topoisomerase I Inhibitors

- Camptothecin derivatives
 - irinotecan; Colorectal
 - irinotecan liposome; metastatic pancreatic
 - topotecan; Ovarian, Lung, Cervical
Topoisomerase II Inhibitors

• Mechanism of action: Interferes with the activity of topoisomerase in the process of DNA replication
• Toxicities: Nausea, vomiting, diarrhea, bone marrow suppression
Topoisomerase II Inhibitors

• Anthracyclines
 • daunorubicin; ALL, AML
 • doxorubicin; baseline EF, lifetime cumulative dose; Breast, Sarcoma
 • liposomal doxorubicin; Ovarian, Kaposi sarcoma
 • epirubicin; Breast
 • idarubicin; AML

➢ Epipodophyllotoxins
 • etoposide; Lung, Testicular
Antibiotic Oncologics

- **Mechanism of action:** DNA intercalation (insert between two strands of DNA), generate highly reactive free radicals that damage intercellular molecules
- **Toxicities:** Bone marrow suppression
- **Antitumor antibiotics**
 - Bleomycin; Pulmonary toxicities; Lung, Testicular, NHL
 - Mitomycin; Delayed bone marrow suppression; Anal, Pancreatic, Stomach
Antibiotic Oncologics

• Mechanism of action: DNA intercalation (insert between two strands of DNA), generate highly reactive free radicals that damage intercellular molecules

• Toxicities: Bone marrow suppression
Asparaginase Derivatives

- Mechanism of action: Catalyzes asparagine deamination resulting in decreased circulating asparagine and cytotoxicity of asparagine-dependent leukemic cells
- Toxicities: Hypersensitivity reaction, hyperglycemia
Aspariginase Derivatives

- **Mechanism of action:** Catalyzes asparagine deamination resulting in decreased circulating asparagine and cytotoxicity of asparagine-dependent leukemic cells.
- **Toxicities:** Hypersensitivity reaction, hyperglycemia.
- E. coli derived asparaginase; ALL
- Pegaspargase; ALL
Hypomethylating Agents

- Mechanism of action: Produces DNA hypomethylation restoring normal tumor suppressor gene function and control of cellular differentiation and proliferation
- Toxicities: Bone marrow suppression
Hypomethylating Agents

- Mechanism of action: Produces DNA hypomethylation, restoring normal tumor suppressor gene function and control of cellular differentiation and proliferation.

- Toxicities: Bone marrow suppression
 - azacitidine; MDS
 - decitabine; MDS
Other Chemotherapy

- Other
 - arsenic trioxide; causes apoptosis-like changes to NB4 human promyelocytic leukemia cells in vitro; APL
 - trabectedine; binds and alkylates DNA in the minor groove leading to disruption of the cell cycle and eventual cell death; Liposarcoma, Leiomyosarcoma
 - octreotide; inhibits multiple hormones including growth hormone, glucagon, insulin and LH; Carcinoid tumors, diarrhea
Hormonal Therapy

Used in managing hormonally sensitive cancers (Breast, Prostate, Ovarian, and Endometrial cancer)

Mechanism of action: The hormone changes the hormonal environment that alters growth factors thus the stimulus for tumor growth is suppressed or removed
Hormone Therapy

Women
- Fatigue
- Hot flashes
- Mood swings
- Nausea
- Osteoporosis
- Weight gain

Men
- Decreased sexual desire
- Enlarged breasts
- Hot flashes
- Impotence
- Incontinence
- Osteoporosis
Examples of Hormonal Therapy

- Androgen receptor antagonists
- Aromatase Inhibitors
- Estrogen receptor antagonist
- Selective estrogen receptor modulator (SERM)
- LH-RH (GnRh) analogues and antagonists
- Other
Androgen Receptor Antagonists

- Mechanism of action: Binds and inhibits androgen receptors
 - bicalutamide; Prostate
 - flutamide; Prostate
 - enzalutamide; Prostate
Aromatase Inhibitors

- Mechanism of action: lowers the amount of estrogen which signals hormone receptors.
- Slows tumor growth by inhibiting this process.
- Used in post-menopausal women with hormone receptor positive breast cancer.
- Toxicities: Arthralgia, vaginal dryness, accelerated bone loss.
- letrozole; Breast
- exemestane; Breast
- anastrozole; Breast
Estrogen Receptor Antagonist

- Mechanism of action: Binds to estrogen receptors and down regulates estrogen receptor protein producing anti-estrogenic effects
- Toxicities: Injection site pain, hot flashes, arthralgia
- fulvestrant; Breast
Selective Estrogen Receptor Modulator (SERM)

- Mechanism of action: Selectively binds to estrogen receptors producing anti-estrogenic effects
- Toxicities: Hot flashes, vaginal dryness
- tamoxifen; Need baseline GYN exam; Breast, premenopausal
- raloxifene; Post menopausal high risk for invasive breast cancer
Luteinizing Hormone-
Releasing Hormone

• Agonists
 • Suppress secretion of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from pituitary gland thus decreasing testosterone levels

• Antagonists
 • Works on the gonadotropin releasing hormone
Luteinizing Hormone-Releasing Hormone Agonists

- leuprolide
 - Gonadotropin-releasing hormone (GnRH) agonist
 - Indicated for prostate cancer
- goserelin
 - Indicated for advanced breast and prostate cancers
- triptorelin
 - Indicated for ovarian and prostate cancers
Other Hormonal Agents

- abiraterone; inhibits 17 alpha-hydroxylase/C17,20-lyase to block androgen biosynthesis leading to decreased androgen-sensitive tumor growth; Prostate
- megestrol acetate; agonizes glucocorticoid receptors; Cancer related anorexia
- ketoconazole-inhibits fungal cell membrane ergosterol synthesis; Prostate
IMMUNOTHERAPY: Using the Body To Fight Cancer
Immunotherapy

- Also called Biological Response Modifier Therapy
- Stimulate or restore immune system to fight cancer cells
- Modify the relation between the tumor and the host
- Includes antibodies, cytokines, and other substances that stimulate immune function
Immunotherapy

Types

- ipilimumab: binds to CTLA-4 antigen to block activity and augment T-cell activation and proliferation; Melanoma
- nivolumab: binds to PD-1 receptor on T-cells blocking PD-1 pathway mediated anti-tumor immune response inhibition; Metastatic NSCLC, Metastatic Melanoma, Renal cell carcinoma, Squamous cell H/N, Classic HL, Urothelial, MSI-H (microsatellite instability-high) or dMMR (mismatch repair deficient met. Colorectal cancer

Interferon, interleukins, anti-CTLA4, anti-PD-1, anti-PDL-1, cancer vaccines
Immunotherapy

pembrolizumab: binds to PD-1 receptor on T-cells blocking PD-1 pathway mediated anti-tumor immune response inhibition; Melanoma, NSCLC, HNSCC, Classical HL, Urothelial/Bladder

durvalumab: blocks PD-L1 with the PD-1 and CD80 molecules; recombinant DNA technology in Chinese Hamster Ovary cell suspension culture; Urothelial

atezolizumab: binds to PD-L1 and blocks interactions with both PD-1 and B7.1 receptors; Urothelial.
Immunotherapy

elotuzumab; humanized monoclonal antibody targeting SLAMF7 (Signaling Lymphocytic Activation Molecule Family member 7) protein; activates NKC through both the SLAMF7 pathway and Fc receptors; Multiple Myeloma

sipuleucel-T; Induces T-cell mediated immune response targeted against prostatic acid phosphate antigen; Prostate

tolimidone laherparepvec; Replicates within tumor and produces GM-CSF inducing tumor cell death and enhancing antitumor immune response; genetically engineered oncolytic virus; Given in divided doses to the tumor lesions in Melanoma
Interferon

Mechanism of action: Antiviral (inhibits viral replication), antiproliferative, and immunomodulatory effects, activate and increases cytotoxicity of natural killer cells, enhances immune response

Cytokines

Alpha, beta, and gamma derivatives

interferon alfa 2b; Hairy cell leukemia, Melanoma, NHL, Hepatitis
Interleukins

Mechanism of action: Stimulates T-lymphocyte proliferation, enhances killer T-cell activity, stimulates and enhances natural killer cells

Cytokines

Produced by helper T-cells

aldesleukin; Renal cell, Melanoma
Colony Stimulating Factors

Red Cell
- darbepoietin alpha
- Epoetin alpha

White Cell
- filgrastim
- tbo-filgrastim
- pegfilgrastim
- sargramostim
Targeted Therapies

- Prevent/Block/Interrupt Cell Growth
- Cut off blood flow to tumor
- Target defects in the cancer cells
- Carry other drugs to a tumor
- Cause cell death (apoptosis)
- Make the cancer cells more receptive to the immune system
Therapeutic Antibodies

• Engineered antibodies produced by a single clone of cells that is specific for a given antigen
• Passive immunotherapy
• Names end in “mab”
Therapeutic Antibodies

- **Murine-mouse**
- **Humanized-human**
- **Human Anti-Murine Antibody (HAMA)**
- **Chimeric-part mouse/human**
- **Conjugated-a chemotherapy drug, radioactive particle, or toxin is connected to monoclonal antibody**
- **Unconjugated-monoclonal antibody without any drug, radioactive particle, or toxin attached**
Therapeutic Antibodies
Common Targets

- CD20
- CD52
- EFGR
- HER2
- PD 1
- PIGF
- VEGFA
Therapeutics Antibodies

- CD20
 - rituximab; NHL, CD20-positive CLL, RA
 - ibritumomab tiuxetan; NHL
 - ofatumumab; CLL
Therapeutic Antibodies

• EGFR (epidermal growth factor receptor)
 • panitumumab; Colorectal
 • cetuximab; Colorectal, Squamous H/N

• HER2
 • pertuzumab; HER2 positive Breast
 • trastuzumab; HER2 positive Breast, HER2 positive Gastric
Therapeutic Antibodies

- **PIGF (Phosphatidylinositol-glycan biosynthesis class F protein)**
 - ziv-afibercept; Colorectal

- **RNAKL (Receptor Activator of Nuclear Factor Kappa-B Ligand)**
 - denosumab; Solid tumor bone metastasis, hypercalcemia, Giant cell tumor of bone

- **VEGF (Vascular endothelial growth factor)**
 - bevacizumab; Colorectal, NSC Lung non squamous, GBM, Renal cell, Cervical, Breast
 - ramucirumab; Gastric, NSC lung, colorectal
Antibody-Drug Conjugates

- **CD30**
 - brentuximab vedotin; HL, Systemic anaplastic large cell lymphoma

- **HER2**
 - ado trastuzumab emtansine; HER2 positive breast
Kinase Inhibitors

- Mechanism of action: Enzyme inhibitor that blocks the action of one or more protein kinase which alters biological processes including but no limited to modulate cell function; Most names end in “nib”
- Toxicities: Vary based on target
Kinase Inhibitors

• BCR-ABL (Abelson murine leukemia viral oncogene)
 • nilotinib; Ph-positive CML
 • dasatinib; Ph-positive CML
 • bosutinib; Ph-positive CML

• ALK (anaplastic lymphoma kinase)
 • crizotinib; 1st generation ALK/ROS1 positive NSCLC
 • ceritinib; 2nd generation ALK positive NSCLC
 • alectinib; 3rd generation ALK positive NSCLC
 • brigatinib; ALK positive NSC Lung
Kinase Inhibitors

- BRAF
 - dabrafenib; Melanoma
 - vemurafenib; Melanoma
 - cobimetinib; in combination with vemurafenib; Melanoma
- BTK (Bruton’s Tyrosine Kinase)
 - ibrutinib; CLL, Mantle cell lymphoma
- CDK 4,6
 - palbociclib; ER/PR positive HER2 negative Breast
Kinase Inhibitors

- **EGFR (epidermal growth factor receptor)**
 - osimertinib; wild type sparing; NSC Lung with EGFR T790M mutations
 - afatinib; NSC Lung with EGFR exon 19 deletions or exon 21
 - erlotinib; NSC Lung with EGFR exon 19 deletions or exon 21, Pancreatic with gemcitabine
 - gefitinib; NSC Lung with EGFR exon 19 deletions or exon 21 mutations
Kinase Inhibitors

• FLT3 (FMS related Tyrosine Kinase 3)
 • sorafenib; Hepatocellular, Renal Cell, Thyroid
 • sunitinib (Sutent); Renal Cell, GIST, Pancreatic neuroendocrine
• BCL-2
 ➢ ventoclax; CLL with 17p deletion
 ➢ Restores apoptosis
Kinase Inhibitors

- HER2 (ERBB2/neu)
 - afatinib; NCS Lung with EGFR exon 19 deletions or exon 21 mutations
 - lapatinib; HER2 overexpressing Breast
- JAK 1/2
 - ruxolitinib; Myelofibrosis, Polycythemia vera
Kinase Inhibitors

- **KIT**
 - axitinib; Renal cell
 - regorafenib; Colorectal, GIST
 - dasatinib; Ph-positive CML, Ph-positive ALL
 - pasopanib; Renal cell, Soft tissue sarcoma
 - imatinib; Ph-positive CML
 - sunitinib; Renal cell, GIST
Kinase Inhibitors

- MEK (Mitogen-activated protein kinase)
 - trametinib; Melanoma
- mTOR (Mechanistic Target of Rapamycin)
 - sirolimus; Kidney transplant rejection prophylaxis
 - temsirolimus; Renal cell
 - everolimus; ER/PR positive HER2 negative Breast, Pancreatic neuroendocrine, Renal cell
Kinase Inhibitors

- idelalisib; inhibits P13K, disrupting B-cell receptor and cytokine signaling pathways, thus inhibiting malignant B-cell proliferation; CLL
Other Cancer Therapy

- PARP (poly (ADP-ribose) polymerase)
 - olaparib; BRCA-mutated Ovarian

- Proteasome
 - bortezomib; Multiple Myeloma, Mantle Cell Lymphoma
 - carfilzomib; Multiple Myeloma
 -Ixazomib; Multiple Myeloma

- omacetaxine mepesuccinate; inhibits protein synthesis; CML
Other Cancer Therapy

- Other
 - pomalidomide; Multiple Myeloma
 - lenalidomide; Multiple Myeloma, MDS, Mantle Cell Lymphoma
 - thalidomide; Multiple Myeloma
Supportive Care Medications

- IV hydration
- Electrolyte replacement
- Antiemetic's
- Antidiarrheal
- Stool softeners/laxatives
- Nutritional support
- Appetite stimulants
- Antidepressants/Antianxiety
Advanced Practice Considerations

<table>
<thead>
<tr>
<th>Activity</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintain awareness of cancer agents and treatment options</td>
<td></td>
</tr>
<tr>
<td>Utilize Package Insert for drug details including dosing and toxicity management</td>
<td></td>
</tr>
<tr>
<td>Encourage supportive care to minimize toxicity</td>
<td></td>
</tr>
<tr>
<td>Collaborate with respective disciplines</td>
<td></td>
</tr>
<tr>
<td>Support patients physically (symptom management), psychosocially (referrals to social work/case management), emotionally (referrals to psychology/support groups) and spiritually (refer to chaplain/spiritual counselor)</td>
<td></td>
</tr>
<tr>
<td>Spend time with other team members</td>
<td></td>
</tr>
</tbody>
</table>
Resources

- chemocare.com
- uptodate.com
- Oncology Business Review
- ASCO
- American Cancer Society
 - 1-800-813-HOPE (4673)
 - http://www/cancer.org/
- National Cancer Institute
 - 1-800-4-CANCER (422-6237)
 - http://www.cancer.gov/
 - https://www.cancer.gov/about-cancer/treatment/drugs
- National Comprehensive Cancer Network
 - http://www.nccn.org/
- Vanderbilt My Cancer Genome
 - www.mycancergenome.org
Taking care of your mind & thoughts

Taking care of your physical health & body

Self-Care

Increasing your own well-being through self-care behaviors

Taking care of your spiritual health

Taking care of your emotions

© Dr. Claire Nicogossian 2014 www.momswellbeing.com
References

References