Surgery Within and Around Critical White Matter Tracts

Kaisorn L. Chaichana, M.D.
Assistant Professor of Neurosurgery, Oncology, and Otolaryngology-Head & Neck Surgery
Mayo Clinic Florida, Jacksonville, FL
Subcortical Space

- Area of the brain below the cortical surface
- Critical white matter tracts
- Critical gray matter regions
- Traditional techniques to access these regions can be associated with significant morbidity
Critical White Matter Tracts

- 3 different types of tracts
 - Commissural
 - Projection
 - Association

<table>
<thead>
<tr>
<th>WHITE MATTER TRACT</th>
<th>FIBER CATEGORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corona Radiata/Internal Capsule (CR/IC)</td>
<td>Projection</td>
</tr>
<tr>
<td>Optic Radiations (OR)</td>
<td>Projection</td>
</tr>
<tr>
<td>Superior Longitudinal Fasciculus (SLF)</td>
<td>Association</td>
</tr>
<tr>
<td>Inferior Longitudinal Fasciculus (ILF)</td>
<td>Association</td>
</tr>
<tr>
<td>Uncinate Fasciculus (UNC)</td>
<td>Association</td>
</tr>
<tr>
<td>Inferior Fronto-Occipital Fasciculus (IFO)</td>
<td>Association</td>
</tr>
<tr>
<td>Cingulate Fasciculus (CNG)</td>
<td>Association</td>
</tr>
<tr>
<td>Corpus Callosum (CC)</td>
<td>Commissural</td>
</tr>
<tr>
<td>Anterior Commissure (AComm)</td>
<td>Commissural</td>
</tr>
</tbody>
</table>
Corticospinal Tract

- Principle projection fibers of the cerebral hemisphere
- Largest projection fiber tract
- Consists of:
 - Corona radiata superiorly
 - Classic V-shaped capsule at level of basal ganglia
 - Crus cerebri in cerebral peduncle
Superior Longitudinal Fasciculus/Arcuate Fasciculus

- Lateral to ventricles and centrum ovale
- Indirect: SLF I-III, SLF-tp; Direct: AF
- Dorsal Stream
- Connects portions of frontal lobe with occipital and temporal areas
- Disruption can cause deficits in:
 - Language (phonetics/articulation/repetition)
 - Motor coordination
 - Visual spatial perception
Inferior Frontal-Occipital Fasciculus

- Connects orbital and frontopolar regions with ventromedial occipital cortex
- Ventral Stream
- Under insular region, deep to SLF, at level of external capsule
- Disruption can cause deficits in:
 - Language (semantics)
Inferior Longitudinal Fasciculus

- Connects temporal and occipital lobes
- Runs at level of optic radiation
- Fibers blend with the IFOF
- Involved in:
 - Object Recognition
 - Visual Agnosia
 - Prospagnosia
Other Tracts

- Left Frontal Aslant Tract
- Subcallosal Fasciculus
- Uncinate Fasciculus
- Superior Frontal-Occipital Fasciculus
- Middle Longitudinal Fasciculus
Why Does It Matter?

- Neurological exam not sensitive for detecting deficits
- Functional status is critical
- Every patient prior to surgery
 - Neuropsych testing
 - Goals of care discussion
 - DTI +/- fMRI
 - High resolution T2 MRI (axial/coronal)
General Approaches to Subcortical Brain Tumors

- Goal is to preserve eloquent cortical areas and white matter tracts
- Two methods:
 - 1) Identify and avoid these areas (i.e. awake mapping)
 - 2) Displace these tracts (i.e. parafascicular approach)

Chaichana et al, Neuro Oncol, 16 (1), 1113, 2014
Jackson et al. J Neurosurg, 78 (6), 588, 2017
Iyer et al. J Neurosurg, in press
Awake Brain Mapping

• Critical elements
 • Resection based on onco-functional boundaries
 • Real time evaluation of neurological function
 • Need to know what tracts/functions you are looking for

• fMRI
 • Coupling between neurological activity and blood flow
 • Cannot determine critical functions
 • Sensitivity (37.1%), Specificity (83.4%) (Kuchsinski et al, 2015)

• DTI
 • Diffusion of water along tracts
 • Diffusion properties altered with tumors
 • No agreement in construction (Pujol et al, 2015)
Awake Brain Mapping Protocols

- Prior to surgery
 - Neuropsych testing
 - Goals of care discussion
 - DTI +/- fMRI
 - High resolution T2 MRI (axial/coronal)
- During surgery
 - Asleep-Awake-Asleep Anesthesia
 - Ultrasound, Navigation
 - Mapping
 - +/- iMRI
- After surgery
 - SLP/PT
 - Neuropsych testing (3-6 months)
Awake Brain Mapping – Case 1

- CC: seizures
- HPI: 45 yo RH female college professor who presented with partial seizures
- PE: intact, neuropsych normal
- Concerning areas
 - Cortical: Broca’s, premotor, motor
 - Subcortical: SLF/AF, IFOF (anterior limb), FAT, caudate

Chaichana et al, Approaches to Brain Tumors, Elsevier, 2018, in press
Letters – ultrasound projection of tumor
1, 5, 8 – motor cortex/Broca’s (anarthria, facial twitching)
6, 7 – ventral premotor (articulation disturbances)
2, 3 – motor cortex (RH movement arrest)
4 – somatosensory (RH and face paresthesias)
47 – head of the caudate (perseveration)
48 – IFOF (semantic paraphasia)
49 – FAT (speech initiation problems)
50 – SLF (articulation)
Awake Brain Mapping – Case 1

- Pathology – IDH1+, 1p19q-
- Immediate postop – hesitancy with speech, dysarthria
- 2 weeks postop – intact exam
- 1 mo back to teaching
- 3 mo neuropsych – normal

Chaichana et al, Approaches to Brain Tumors, Elsevier, 2018, in press
Awake Brain Mapping – Case 2

- CC: seizures
- HPI: 49 yo RH male business owner who presented with partial seizures
- PE: intact, neuropsych normal
- Concerning areas
 - Cortical: Wernicke’s, motor
 - Subcortical: SLF (III, tp)/AF, IFOF
Letters – ultrasound projection of tumor
1, 2 – ventral premotor (articulation disturbances)
3 - complete anomia
48 – SLF (articulation difficulty)
49 – AF (phonological paraphasias, repetition)
50 – IFOF (semantic paraphasia)
Awake Brain Mapping – Case 2

• Pathology - IDH1-, 1p19q-
• Immediate postop – some comprehension difficulty
• 2 weeks postop – intact exam
• 1 mo – returned to work
• 3 mo neuropsych - normal

Chaichana et al, Approaches to Brain Tumors, Elsevier, 2018, in press
General Approaches to Subcortical Brain Tumors

- Goal is to preserve eloquent cortical areas and white matter tracts
- Two methods:
 1) Identify and avoid these areas (i.e. awake mapping)
 2) Displace these tracts (i.e. parafascicular approach)

Chaichana et al, Neuro Oncol, 16 (1), 1113, 2014
Jackson et al. J Neurosurg, 78 (6), 588, 2017
Iyer et al. J Neurosurg, in press
Traditional Approaches to Subcortical Brain Tumors

- Large craniotomy
- Extensive white matter dissection
- Use of fixed retractor systems
- Potential sources of injury
 - White matter dissection
 - Tissue creep
 - Repetitive entry into resection site
 - Ischemia induced by retraction

Concept of Minimally Disruptive Approaches

- Trans-sulcal vs. Trans-gyral
- Displacement of white matter tracts (<15 mm)
- Tubular retractors
 - Circumferential retraction
 - Protected corridor for dissection and resection

Use of Tubular Retractors is an Old Concept

The stereotaxic retractor in computer-assisted stereotaxic microsurgery

Technical note

Patrick J. Kelly, M.D., Stephan J. Goerss, B.S., and Bruce A. Kall, M.S.

Departments of Neurosurgery and Information Processing and Systems, Mayo Foundation and Mayo Medical School, Rochester, Minnesota

Variety of Tubular Retractors

- Peel-away catheters (12F, 14F, 17F)
- Viewsite™
- BrainPath™
Peel-Away Catheters

• Advantages
 No brain retraction
 Minimal collateral damage

• Disadvantages
 Requires endoscope
 Limited degree of freedom
 Limited number of instruments
 Hemostasis
 Cavity-based surgeries
Colloid Cyst with Peel-Away Catheters

- 22 year-old female with history of colloid cyst that increased in size on serial imaging from 3 mm to 8mm, with increase in headaches.
- Right frontal, trans-cortical approach
Colloid Cyst with Peel-Away Catheters
Colloid Cyst with Peel-Away Catheters

- Final pathology: colloid cyst
- Discharged to home on POD 1
BrainPath™ Tubular Retractor

- **Advantages**
 - Circumferential retraction
 - Trans-sulcal or gyral
 - Minimal collateral damage
 - Microscope or exoscope

- **Disadvantages**
 - Limited to 13.5 mm aperture
 - Limited instruments
 - Limited degree of freedom
Exoscopic Visualization
Surgical Adjuncts

- High resolution T2 axial and coronal MRI images
- Intraop navigation
- DTI/tractography
- Intra-operative monitoring
- Ultrasound
Tubular-Based Tumor Resection – Case 1

- CC: right UE/LE weakness
- HPI: 22 yo RH female presented with progressive right sided weakness
- PE: RUE/RLE 4-/5
- Concerning areas
 - Cortical: Broca’s, motor
 - Subcortical: SLF/AF, IFOF (anterior limb), FAT, internal capsule

Iyer et al, J Neurosurg, 2018, in press
Tubular-Based Tumor Resection – Case 1

Chaichana et al, JNS-A, 178, 2017
Iyer et al, J Neurosurg, 2018, in press
Pathology: Glioblastoma (MGMT+/IDH-)
Disposition: Home on POD 3 (18 months out without recurrence), neuro intact
6 mo – competing in archery competitions

Tubular-Based Tumor Resection – Case 1

Chaichana et al, JNS-A, 178, 2017
Iyer et al, J Neurosurg, 2018, in press
CC: right weakness
HPI: This is a 53 year-old RH male presented with progressive right upper and lower extremity weakness.
PE: 1/5 RUE/RLE
Concerning areas:
 - Cortical: motor cortex, sensory cortex
 - Subcortical: SLF/AF, IFOF, thalamus, basal ganglia, internal capsule

Chaichana et al, JNS-A, 178, 2017
Iyer et al, J Neurosurg, 2018, in press
Tubular-Based Tumor Resection – Case 2

- Pathology: glioblastoma (MGMT-/IDH-)
- Post-op 4/5 strength, discharged to home on POD 3
- No recurrence at 7 months, slight left drift

Chaichana et al, JNS-A, 178, 2017
Iyer et al, J Neurosurg, 2018, in press
Tubular-Based Tumor Resection – Case 3

- **CC:** left sided weakness
- **HPI:** This is a 32 yo RH male presented left hemiparesis
- **PE:** LUE/LLE 1-2/5
- Concerning areas:
 - Cortical: motor cortex, sensory cortex
 - Subcortical: CST

Tubular-Based Tumor Resection – Case 3

- Pathology: GBM
- Disposition: Neuro intact, Discharged to home on POD3
- No recurrence at 8 months
CC: persistent emesis

HPI: This is a 49 yo female who presented with persistent nausea and vomiting on two previous occasions from two hemorrhages of a right middle cerebellar peduncle cavernoma

PE: neuro intact except right facial (HB1-2/6) and CNVI weakness
Tubular-Based Tumor Resection – Case 4
Tubular-Based Tumor Resection – Case 4

- Pathology: cavernoma
- Disposition: Neuro intact, discharged to home on POD2
BrainPath Brain Tumor Case Totals - 53

- Surgery
 36 resections
 17 excisional biopsies

- Locations
 Thalamus/basal ganglia - 24
 Centrum semiovale/white matter tracts - 16
 Optic pathways 4
 Deep cerebellar nuclei – 8

- Pathology
 GBM/AA - 30
 Metastatic - 10
 Low grade glioma - 2
 Cavernoma - 8
 Other - 2

- Outcomes
 Improved - 39
 Stable – 10
 Worsened – 3 (2 transient)
Conclusions

• Neurological function beyond the standard neurological exam is important to preserve
• Need to understand where the white matter tracts are and what they do
• You can either identify and avoid, or work around or displace these tracts
• Critical to be able to do both, which require a different set of tools