

Innovative Solutions and Best Practices: Excellence in Cancer Clinical Research

Howard A. Burris, III, MD ASCO President Chief Medical Officer, Sarah Cannon

THE CHANGING LANDSCAPE: FROM WEEKLY PACLITAXEL TO PILLS AND CHECKPOINTS

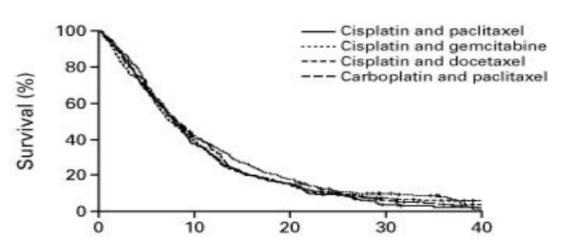
- Drugs: Chemo to ADC's, TKI's, and IO
- Trials: Phase 1 to 3 is now FIM to POC
- Approach: "one size fits all" to "personalized driven by biology"

FDA ONCOLOGY APPROVALS

1998 FDA Approvals

8

2018 FDA Approvals


49

ORIGINAL ARTICLE

Comparison of Four Chemotherapy Regimens for Advanced Non–Small-Cell Lung Cancer

Joan H. Schiller, M.D., David Harrington, Ph.D., Chandra P. Belani, M.D., Corey Langer, M.D., Alan Sandler, M.D., James Krook, M.D., Junming Zhu, Ph.D., and David H. Johnson, M.D. for the Eastern Cooperative Oncology Group

N = 1207

January 10, 2002

N Engl J Med 2002; 346:92-98 DOI: 10.1056/NEJMoa011954

2018-2019 SINGLE ARM TRIAL HEMATOLOGY/ONCOLOGY APPROVALS (WWW.FDA.GOV)

- Pembrolizumab (KEYTRUDA, Merck & Co., Inc.) for patients with metastatic small cell lung cancer (SCLC) with disease progression on or after platinum-based chemotherapy and at least one other prior line of therapy. N=83
- Ruxolitinib (JAKAFI, Incyte Corporation) for steroid-refractory acute graft-versus-host disease (GVHD) in adult and pediatric patients 12 years and older.
 N=49
- Ivosidenib (TIBSOVO, Agios Pharmaceuticals, Inc.) for newly-diagnosed acute myeloid leukemia (AML) with a susceptible IDH1 mutation, as detected by an FDA-approved test, in patients who are at least 75 years old or who have comorbidities that preclude the use of intensive induction chemotherapy.

 N=28
- Erdafitinib (BALVERSA, Janssen Pharmaceutical Companies) for patients with locally advanced or metastatic urothelial carcinoma, with susceptible FGFR3 or FGFR2 genetic alterations, that has progressed during or following platinum-containing chemotherapy, including within 12 months of neoadjuvant or adjuvant platinum-containing chemotherapy. N=87
- Tagraxofusp-erzs (ELZONRIS, Stemline Therapeutics), a CD123-directed cytotoxin, for blastic plasmacytoid dendritic cell neoplasm (BPDCN) in adults
 and in pediatric patients 2 years and older. N=13
- Calaspargase pegol-mknl (ASPARLAS, Servier Pharmaceuticals LLC), an asparagine specific enzyme, as a component of a multi-agent chemotherapeutic
 regimen for acute lymphoblastic leukemia (ALL) in pediatric and young adult patients age 1 month to 21 years. N=124
- Pembrolizumab (KEYTRUDA, Merck & Co., Inc.) for adult and pediatric patients with recurrent locally advanced or metastatic Merkel cell carcinoma (MCC). N=50
- Gilteritinib (XOSPATA, Astellas Pharma US Inc.) for treatment of adult patients who have relapsed or refractory acute myeloid leukemia (AML) with FLT3 mutation as detected by an FDA-approved list. N=138
- Larotrectinib (VITRAKVI, Loxo Oncology Inc. and Bayer) for adult and pediatric patients with solid tumors that have a neurotrophic receptor tyrosine kinase (NTRK) gene fusion without a known acquired resistance mutation, that are either metastatic or where surgical resection is likely to result in second reliable to the property of the property of
- Pembrolizumab (KEYTRUDA, Merck & Co., Inc.) for patients with hepatocellular carcinoma (HCC) who have been previously treated with sorafenib.

CHALLENGES IN CLINICAL RESEARCH

- Vast numbers of trials
- Expansion cohorts
- Rare mutations
- Education
- Eligibility criteria
- Patient access
- Trial complexity
- Overwhelming paperwork
- Data (volume, interpretation)

INNOVATIVE SOLUTIONS: Genospace and Molecular Cancer Conferences

NGS TESTING - IN THE NEWS

FDA Finalizes Guidances for Next-Generation Sequencing Tests

Fri, 04/13/2018 - 9:58am by FDA

MAR 16 MORE ON ANALYTICS

CMS approves Next Generation Sequencing for cancer patients

The FoundationOne CDx test is the first breakthrough-designated in vitro diagnostic test and can detect genetic mutations in 324 genes.

The Centers for Medicare and Medicaid Services has finalized coverage of Next Generation Sequencing for cancer patients.



Next-Generation Sequencing Proves Cost-Effective in Metastatic NSCLC

05/17/18

An economic model comparing different types of genetic testing in metastatic non-small cell lung cancer (NSCLC) showed that next-generation sequencing (NGS) is more cost-effective than testing for one or a limited number of genes at a given time.

Next-Generation Sequencing for Metastatic NSCLC Associated With Substantial Cost Savings

Angelica Welch
Published Online:5:05 PM, Wed May 16, 2018

MAR 6, 2018 @ 10:30 AM 9,474 ®

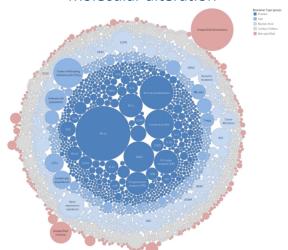
All Cancer Patients Should Have Access To Genomic Testing

Days after Thanksgiving, the FDA approved Foundation Medicine's comprehensive genetic test for evaluating cancer. The idea—and practice—of testing tumors for specific DNA or protein abnormalities is not new. Previously, the agency listed several dozen approved companion diagnostic tests; these earlier tools check one or a few molecules to inform the cancer subtype, prognosis, and likelihood of response to treatments.

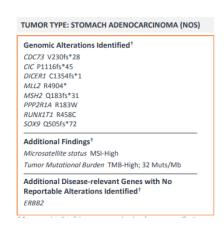
WHY DO WE NEED TO PROFILE PATIENTS

- For the patient/individual benefit
- For clinical research/drug development (trial accrual)
- For cancer research/benefit of all (biology, resistance)

THE CHALLENGE OF PRECISION MEDICINE


Van Allen et al. Nature Medicine 2014;20:682-688

OPPORTUNITY


As new data and technologies emerge, clinicians are required to interpret and act upon increasingly complex information

INTORMATION DNA Gene List: Entire Coding Sequence for the Detection of Base Substitutions, Insertion/Deletions, and Copy Number Alterations									
ARAF	ARFRP1	ARID1A	ARID18	ARID2	ASXLI	ATM	ATR	ATRX	AURKA
AURKB	AXIV1	AXL	BAP1	BARD1	BCL2	BCL2L1	BCL2L2	BCL6	BCOR
BCORL1	BLM	BRAF	BRCAI	BRCA2	BRD4	BRIP1	8TG1	BTK	C11orf30 (EMSY)
CARD11	CBFB	CBL	CCND1	CCND2	CCND3	CCNE1	CD274	CD794	CD798
CDC73	CDH1	CDK12	CDK4	CDK6	CDK8	CDKN1A	CDKN1B	CDKN2A	CDKN28
CDKN2C	CEBPA	CHD2	CHD4	CHEK1	CHEK2	CIC	CREBBP	CRKL	CRLF2
CSF1R	CTCF	CTNNA1	CTNNB1	CUL3	CYLD	DAXX	DDR2	DICER1	DNMT3A
DOTIL	EGFR	EP300	EPHA3	EPHA5	EPHA7	EPHB1	ERBB2	ERBB3	ER884
ERG	ERRF11	ESR1	EZH2	FAM46C	FANCA	FANCC	FANCD2	FANCE	FANCE
FANCG	FANCL	FAS	FAT1	FBXW7	FGF10	FGF14	FGF19	FGF23	FGF3
FGF4	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	FH	FLCN	FLT1	FLT3
FET4	FOXL2	FOXP1	FRS2	FUBP1	GABRA6	GATAI	GATA2	GATA3	GATA4
GATA6	GID4 (C17orf39)	GL/1	GNAII	GNA13	GNAQ	GNAS	GPR124	GRIN2A	GRM3
GSK3B	H3F3A	HGF	HNF1A	HRAS	HSD381	HSP90AAI	IDH1	IDH2	IGF1R
IGF2	IKBKE	BC2F1	ILTR	INHBA	INPP4B	IRF2	IRF4	IRS2	JAKI
JAK2	JAK3	JUN	KATGA (MYST3)	KDMSA	KDMSC	KDM64	KDR	KEAPI	KEL
KIT	KLHL6	KMT2A (MLL)	KMT2C (MLL3)	KMT2D (MLL2)	KRAS	LMO1	LRP1B	LYW	LZTR1
MAGI2	MAP2K1	MAP2K2	MAP2K4	MAP3K1	MCL1	MDM2	MDM4	MED12	MEF2B
MEN1	MET	MITE	MLH1	MPL	MRE11A	MSH2	MSH6	MTOR	MUTYH
MYC	MYCL (MYCL1)	MYCN	MYD88	NF1	NF2	NFE2L2	NFKBIA	NIX2-1	NOTCH1
NOTCH2	<i>NOTCH3</i>	NPM1	NRAS	NSD1	NTRK1	NTRK2	NTRK3	NUP93	PAK3
PALB2	PARK2	PAXS	PBRM1	PDCD1LG2	PDGFRA	PDGFRB	PDK1	PIK3C28	PIK3CA
PIK3CB	PIK3CG	PIK3R1	PIK3R2	PLCG2	PMS2	POLD1	POLE	PPP2R1A	PRDM1
PREX2	PRKARIA	PRKCI	PRKDC	PRSS8	PTCH1	PTEN	PTPN11	QKI	RAC1
RADSO	RAD51	RAFI	RANBP2	RARA	RB1	RBM10	RET	RICTOR	RNF43
ROS1	RPTOR	RUNK1	RUNX1T1	SDHA	SDHB	SDHC	SDHD	SETD2	SF381
SLIT2	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SNCAIP	SOCS1	SOX10
SOX2	SOX9	SPEN	SPOP	SPTA1	SRC	STAG2	STAT3	STAT4	STK11
SUFU	SYK	TAF1	TBX3	TERC	TERT (promoter only)	TET2	TGFBR2	TNFAIP3	TNFRSF14
TOP1	TOP2A	TP53	TSCI	TSC2	TSHR	U2AF1	VEGFA	VHE	WISP3
WTI	XPO1	ZBTB2	ZNF217	ZNF703					
DNA Gene Li	ist: For the Dete	ction of Select	Rearrangemen	ts					
ALK	BCL2	BCR	BRAF	BRCA1	BRCA2	BRD4	EGFR	ETV1	ETV4
ETV5	ETV6	FGFR1	FGFR2	FGFR3	KIT	MSH2	MYB	MYC	NOTCH2
NTRK2	NTRK2	PDGFRA	RAFI	RARA	RET	ROS1	TMPRSS2		

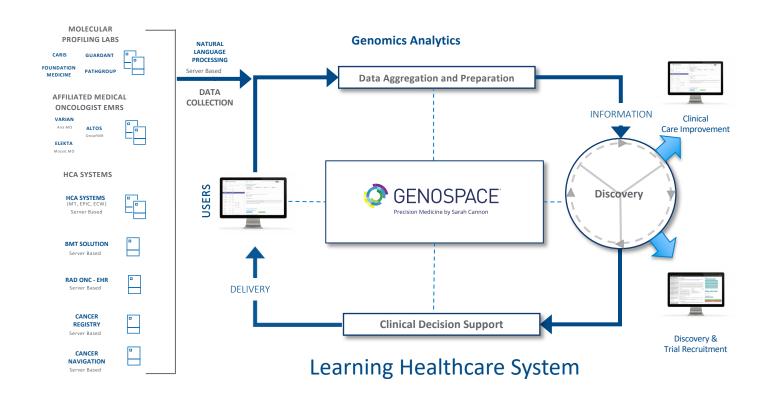
An increasing number of SOC treatment options and clinical trials require the knowledge of a molecular alteration

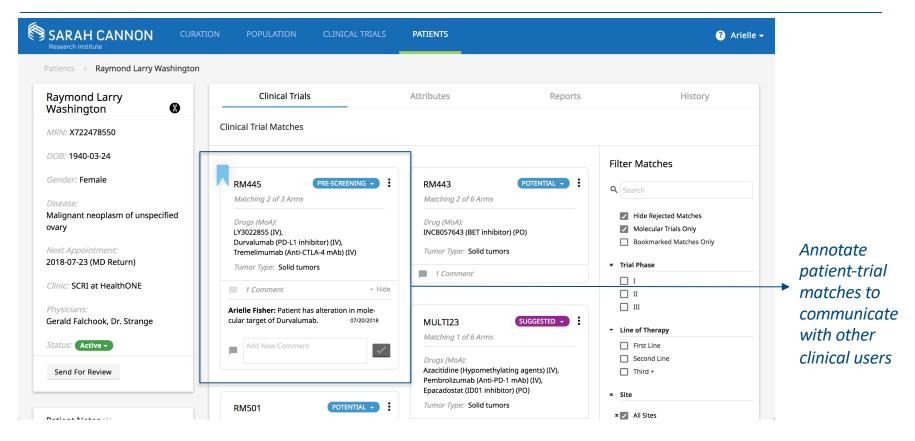
Molecular reports do not present information in an easily clinically actionable format

Sarah Cannon's Personalized Medicine program is uniquely positioned to address the opportunities for our partnered medical oncologists, molecular profiling vendors, and pharmaceutical industry partners

GENOSPACE: ENABLING THE CONVERGENCE OF CLINICAL RESEARCH AND CLINICAL CARE

Large-scale clinical-genomic data aggregation




Discovery & Trial Recruitment

GENOSPACE: ENABLING THE CONVERGENCE OF CLINICAL RESEARCH AND CLINICAL CARE

REVIEW AND MANAGE YOUR PATIENT'S THERAPY OPTIONS

MOLECULAR ONCOLOGY SUPPORT SERVICES

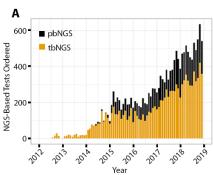
Molecular Cancer Conferences

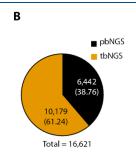
- Regularly-occurring office-specific teleconference
- >1000 MCC reviews in 12 months
- ~18% enrollment rate
- >2x increase in MP ordering
- ~23 physician-hours/month

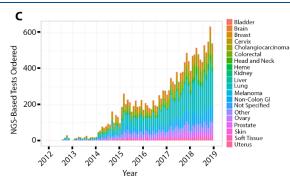
Personalized Molecular Insights

Powered by Genospace

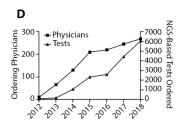
- Real-time Patient-level review of molecular profiles:
- Since 8/6/2018, All new molecular profiles from late-phase clinics at TO have been annotated in Genospace and abstracted into Personalized Medicine Data Warehouse

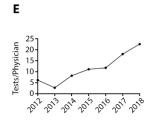


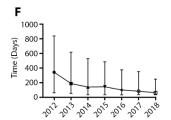

"On-Call" Molecular Insights


- Ad hoc (concierge-level) germline and somatic mutational analysis
- ~4-5 ad hoc cases/week from FCS and TO

BACKGROUND: SARAH CANNON & MOLECULAR PROFILING

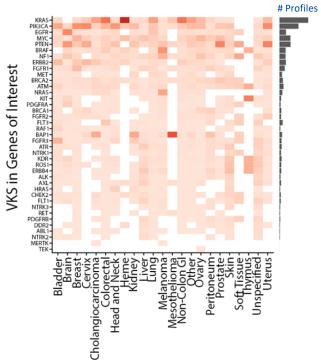



Data Availability: Strategic Sites

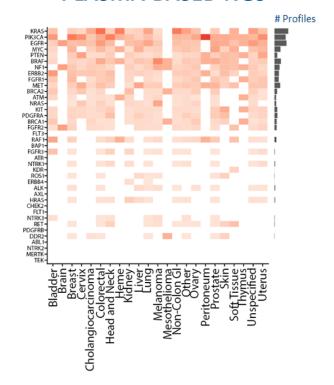

- Tennessee Oncology, Nashville
- Tennessee Oncology, Chattanooga
- Florida Cancer Specialists-East, West Palm Beach
- Florida Cancer Specialists-North, St. Petersburg
- Florida Cancer Specialists-Panhandle, Tallahassee
- Florida Cancer Specialists-South, Ft. Myers
- HCA Midwest Health, Kansas City

DDU/Phase 1

- · Sarah Cannon, Denver
- Florida Cancer Specialists, Sarasota
- · Tennessee Oncology, Nashville



Rapid adoption of tissue- and plasma-based NGS from private medical oncology practices



MUTATION ANALYSIS OF TISSUE-BASED NGS AND PLASMA-BASED NGS

TISSUE-BASED NGS

PLASMA-BASED NGS

TWO TRENDS, ONE TRIAGE DECISION

Precision Medicine

Immuno-Oncology

the NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children

A. Drilon, T.W. Laetsch, S. Kummar, S.G. Dußois, U.N. Lassen, G.D. Demetri, M. Nathernon, G.C. Doebele, A.F. Fango, A.S. Pappa, B. Turpin, A. Dowlast, M.S. Brose, L. Mascarenhas, N. Federman, J. Berlin, W.S. El-Deiry, C. Balk, J. Deeken, V. Bonl, R. Nagasubramanian, M. Taylor, E.R. Ruddzrość, F. Medroski, W. G. Wall, A. L. Raez, J. F. Herthman, R. Benay, M. Ladaryi, B.B. Tuch, K. Ebata, S. Cruickshank, N.C. Ku, M.C. Cox, J. Hawkins, D.S. Hawkins, D.S. Hawkins, D.S. Hawkins, S.D. Hawkins,

NGS Profiling

The NEW ENGLAND IOURNAL OF MEDICINE

ORIGINAL ARTICLE

Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden

M.D. Hellmann, T.E. Ciuleanu, A. Pluzanski, J.S. Lee, G.A. Otterson, Audigier-Valette, E. Minenza, H. Linardou, S. Burgers, P. Salman, H. Borghaei, S.S. Ramalingarm, J. Brahmer, M. Reck, K.J. O'Byrne, W.J. Goese, G. Green, H. Chang, J. Szustakowski, P. Bhagavatheswaran, D. Healey, Y. Fu, F. Nathan, and L. Paz-Ares

Actionable Genomic Alterations

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Crizotinib versus Chemotherapy in Advanced ALK-Positive Lung Cancer

Alice T. Shaw, M.D., Ph.D., Dong-Wins Kim, M.D., Ph.D.,
Kazihliko Nakagaw, M.D., Ph.D., Takashi Seto, M.D., Luico Griefo, M.D.,
Myung Ju Ahn, M.D., Tommaso De Pas, M.D., Benjamin Sesse, M.D., Ph.D.,
Benjamin J. Solome, M.B., B.S., Ph.D., Frons Bidenall, M.D., Ph.D., Viangew, M.D.,
Benjamin Solome, M.B., B.S., Ph.D., Frons Bidenall, M.D., Ph.D., Viangew, M.D.,
Michael Thomas, M.D., Kenneth J. O'Byrne, M.D., Denis Moro-Sibilot, M.D.,
D. Ross Caminge, M.D., Ph.D., Torny Mok, M.D., Vert-Hirsh, M.D.,
Gregory J. Riely, M.D., Ph.D., Shrividya Iyer, Ph.D., Vanessa Tassall, B.S.,
Anna Felli, B.S., Keith D. Willer, Ph.D., and Pas Ja, Hann, M.D., Ph.D.

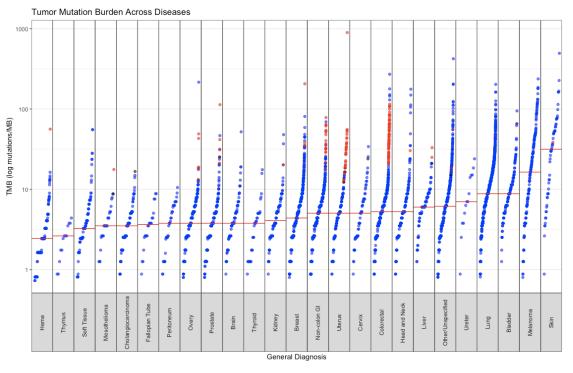
OLUME 36 - NUMBER 17 - JUNE 10, 2011

JOURNAL OF CLINICAL ONCOLOGY

RIGINAL REPORT

Alterations in DNA Damage Response and Repair Genes as Potential Marker of Clinical Benefit From PD-1/PD-L1 Blockade in Advanced Urothelial Cancers

Min Yuen Teo, Kenneth Seier, Irina Ostrovnaya, Ashley M. Reguzzi, Brooke E. Kania, Meradith M. Moran, Catharine K. Gipolla, Mark J. Biath, Joshua Chaim, Hibrant Al-Ahmadhe, Alexandra Sayıler, Maria I. Carlo, David R. Solit, Michael E. Berger, Samuel Funt, Jedd D. Wolchok, Gopa Iyer, Dean F. Bajorin, Margaret K. Callahan, and Janathan E. Bosorberg The NEW ENGLAND JOURNAL of MEDICINE


ORIGINAL ARTICLE

PD-1 Blockade in Tumors with Mismatch-Repair Deficiency

D.T. Le, J.N. Uram, H. Wang, B.R. Bartlett, H. Kemberling, A.D. Eyring, A.D. Skora, B.S. Luber, N.S. Arad, D. Laheru, B. Biedreyik, R.C. Donehower, A. Zaheer, G.A. Fisher, T.S. Croceruzi, J.J. Lee, S.M. Duffy, R.M. Goldberg, A. de la Chapelle, M. Koshiji, F. Bhaige, T. Huesbern, E.H. Hruban, L.D. Wood, N. Cuka, D.M. Pardoll, N. Papadopoulos, K.W. Kinzler, S. Zhou, T.C. Cornish, M. Taube, R.A. Anders, J.R. Eshiberan, B. Vogelstein, and L.A. Diaz, Ir,

TMB FROM COMMERCIAL NGS VENDORS IN THE COMMUNITY SETTING

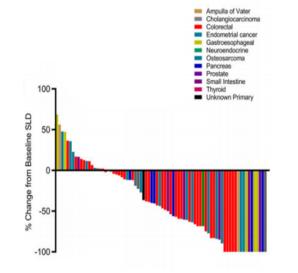
TMB across tumor types in Sarah Cannon data largely mirrors data from previous reports.

MSI-HIGH SPECIMENS ARE A SUBSET OF HIGH TMB SPECIMENS (N = 46,465)

• The majority of MSI-H specimens (~84%) are TMB-H, but not the reverse - Only 14.5% of TMB-H specimens are also MSI-H All specimens 1000 n = 46,465MSI and TMB 10 -TMB-High High n = 3.531n = 550Microsatellite Microsatellite Microsatellite stable ambiguous instable ZR Chalmers et al, In Press

FIRST TISSUE AGNOSTIC FDA APPROVAL---MISMATCH REPAIR DEFICIENCY

FDA grants accelerated approval to pembrolizumab for first tissue/site agnostic indication


Listen to the FDA D.I.S.C.O. podcast about this approval

On May 23, 2017, the U.S. Food and Drug Administration granted accelerated approval to pembrolizumab (KEYTRUDA, Merck & Co.) for adult and pediatric patients with unresectable or metastatic, microsatellite instability-high (MSI-H) or mismatch repair deficient (dMMR) solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options or with MSI-H or dMMR colorectal cancer that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan.

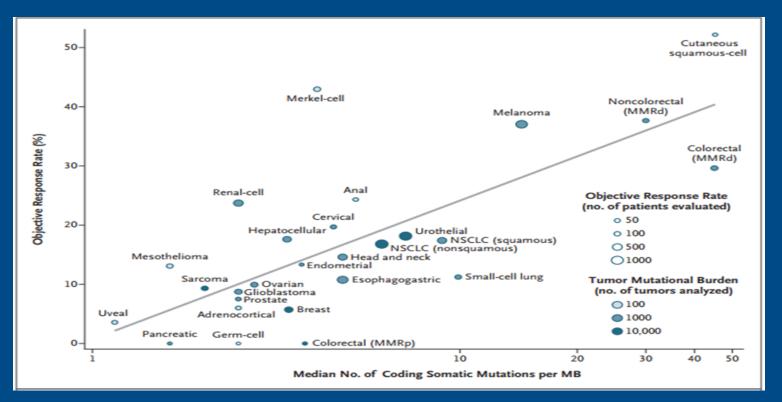
This is the FDA's first tissue/site-agnostic approval.

The approval was based on data from 149 patients with MSI-H or dMMR cancers enrolled across five uncontrolled, multi-cohort, multi-center, single-arm clinical trials. Ninety patients had colorectal cancer and 59 patients were diagnosed with one of 14 other cancer types. Patients received either pembrolizumab, 200 mg every 3 weeks, or pembrolizumab, 10 mg/kg every 2 weeks. Treatment continued until unacceptable toxicity, or disease progression that was either symptomatic, rapidly progressive, required urgent intervention, or associated with a decline in performance status. A maximum of 24 months of treatment was administered.

The major efficacy outcome measures were objective response rate (ORR) assessed by blinded independent central radiologists' review according to RECIST 1.1, and response duration. ORR was 39.6% (95% CI: 31.7, 47.9). Responses lasted six months or more for 78% percent of those who responded to pembrolizumab. There were 11 complete responses and 48 partial responses. ORR was similar irrespective of whether patients were diagnosed with CRC (36%) or a different cancer type (46% across the 14 other cancer types).

Objective response: 53%

Complete response: 21%


Disease control rate: 77%

Median PFS and OS not yet reached (median follow up 12.5 months)

Le et al. Science 2017 July 28;357 (6349): 409 - 413

CORRELATION BETWEEN TMB AND RESPONSE RATE TO PD1-INHIBITION

TMB STILL AN INVESTIGATIONAL BIOMARKER FOR NSCLC?

The ASCO Post

ABOUT → NEWS → MEETINGS → TOPICS → **VIDEOS**

WCLC 2019: Two Studies Show Tumor Mutational Burden Not Associated With Pembrolizumab Efficacy in NSCLC

KEYNOTE 189 and KEYNOTE 21 both demonstrated TMB not significantly associated with OS, PFS, or ORR

> Garassino et al. Abstract OA04.06 Langer et al. Abstract OA04.05

TWO TRENDS, ONE TRIAGE DECISION

Precision Medicine

Immuno-Oncology

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Efficacy of Larotrectinib in TRK Fusion– Positive Cancers in Adults and Children

A. Drilon, T.W. Laetsch, S. Kummar, S.G. Dußois, U.N. Lassen, G.D. Demetri, M. Natherson, G.C. Dosebe, A. F. Fanga, A. S-Pappa, B. Turpin, A. Dowlast, M.S. Brose, L. Mascarenhas, N. Federman, J. Berlin, W.S. El-Deiry, C. Balk, J. Deeken, V. Boni, R. Nagasubramanian, M. Taylor, E.R. Rudźrzniś, F. Meric-Bernstam, P. S. Sohal, P. C. M., L. Eaze, J. F. Herchman, R. Benay, M. Ladaryi, B.B. Tuch, K. Ebata, S. Cruickishnik, N.C. Ku, M.C. Cox, J. Hawkin, S.D. S. Hawkins, S.D. Hawki

NGS Profiling

The NEW ENGLAND IOURNAL OF MEDICINE

ORIGINAL ARTICLE

Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden

M.D. Hellmann, T.E. Giuleanu, A. Pluzanski, J.S. Lee, G.A. Otterson, C. Audigier-Valette, E. Minerza, H. Linardou, S. Burgers, P. Salman, H. Borghaei, S.S. Ramalingam, J. Brahmer, M. Reck, K.J. O'Byrne, W.J. Geses, G. Green, H. Chang, J. Szustakowski, P. Bhagavathesewaran, D. Healey, Y. Fu, F. Nathan, and L. Paz-Ares

Actionable Genomic Alterations

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Crizotinib versus Chemotherapy in Advanced ALK-Positive Lung Cancer

Alice T. Shaw, M.D., Ph.D., Dong-Wins Kim, M.D., Ph.D.,
Kazihliko Nakagaw, M.D., Ph.D., Takashi Seto, M.D., Luico Griefo, M.D.,
Myung Ju Ahn, M.D., Tommaso De Pas, M.D., Benjamin Sesse, M.D., Ph.D.,
Benjamin J. Solome, M.B., B.S., Ph.D., Frons Bidenall, M.D., Ph.D., Viangew, M.D.,
Benjamin Solome, M.B., B.S., Ph.D., Frons Bidenall, M.D., Ph.D., Viangew, M.D.,
Michael Thomas, M.D., Kenneth J. O'Byrne, M.D., Denis Moro-Sibilot, M.D.,
D. Ross Caminge, M.D., Ph.D., Torny Mok, M.D., Vert-Hirsh, M.D.,
Gregory J. Riely, M.D., Ph.D., Shrividya Iyer, Ph.D., Vanessa Tassall, B.S.,
Anna Felli, B.S., Keith D. Willer, Ph.D., and Pas Ja, Hann, M.D., Ph.D.

OLUME 36 · NUMBER 17 · JUNE 10, 2011

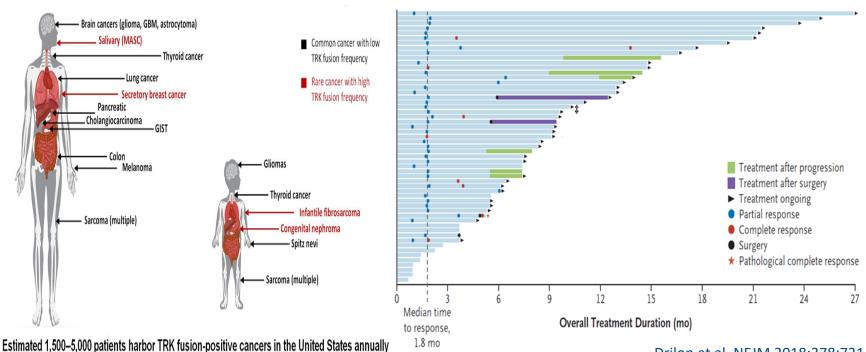
JOURNAL OF CLINICAL ONCOLOGY

RIGINAL REPORT

Alterations in DNA Damage Response and Repair Genes as Potential Marker of Clinical Benefit From PD-1/PD-L1 Blockade in Advanced Urothelial Cancers

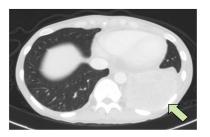
Min Yuen Teo, Kenneth Seier, Irina Ostromaya, Ashley M. Reguzzi, Brooke E. Kania, Meralith M. Moran, Catharine K. Cipolla, Mark J. Binh, Johna Chaim, Hibmat Al-Almadie, Alexandra Snytler, Maria I. Carlo, David R. Solit, Michael E. Berger, Samuel Funt, Jold D. Wolchok, Gopa Iyer, Dean F. Bajorin, Margaret K. Gallahan, and Janathan E. Rosenberg The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

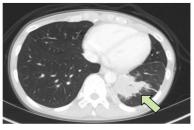

PD-1 Blockade in Tumors with Mismatch-Repair Deficiency

D.T. Le, J.N. Uram, H. Wang, B.R. Bartlett, H. Kemberling, A.D. Eyring, A.D. Skora, B.S. Luber, N.S. Aszad, D. Laheru, B. Biedreyki, R.C. Donehower, A. Zaheer, G.A. Fisher, T.S. Croceruzi, J.J. Lee, S.M. Duffy, R.M. Goldberg, A. de la Chapelle, M. Koshiji, F. Bhaige, T. Huebber, R.H. Hruban, L.D. Wood, N. Cuka, D.M. Pardoll, N. Papadopoulos, K.W. Kinzler, S. Zhou, T.C. Cornish, J.M. Taube, R.A. Anders, J.R. Eshilman, B. Voggletter, and L.A. Diazz, Ir.

- Brain cancer: Bevacizumab (Avastin®), everolimus (Afinitor®)
- ·W PLATSTARGETED ITHE RAIPLES HAVE BEEN APPROVED FOR SPECIFIC TYPES OF CAMCER, (WAVANCANCER, GOV) rozole (Arimidex®), exemestane (Aromasin®), lapatinib (Tykerb®), letrozole (Femara®), pertuzumab (Perjeta®), ado-trastuzumab emtansine (Kadcyla®), palbociclib (Ibrance®), ribociclib (Kisqali®), neratinib maleate (Nerlynx™), abemaciclib (Verzenio™), olaparib (Lynparza™)
- Cervical cancer: Bevacizumab (Avastin®)
- Colorectal cancer: Cetuximab (Erbitux®), panitumumab (Vectibix®), bevacizumab (Avastin®), ziv-aflibercept (Zaltrap®), regorafenib (Stivarga®), ramucirumab (Cyramza[®]), nivolumab (Opdiyo[®])
- Dermatofibrosarcoma protuberans: Imatinib mesylate (Gleevec®)
- Endocrine/neuroendocrine tumors: Lanreotide acetate (Somatuline® Depot), avelumab (Bavencio®), lutetium Lu 177-dotatate (Lutathera®)
- Head and neck cancer: Cetuximab (Erbitux®), pembrolizumab (Keytruda®), nivolumab (Opdiyo®)
- Gastrointestinal stromal tumor: Imatinib mesylate (Gleevec®), sunitinib (Sutent®), regorafenib (Stivarga®)
- Giant cell tumor of the bone: Denosumab (Xgeva®)
- Kidney cancer: Bevacizumab (Avastin®), sorafenib (Nexavar®), sunitinib (Sutent®), pazopanib (Votrient®), temsirolimus (Torisel®), everolimus (Afinitor®), axitinib (Inlyta®), nivolumab (Opdivo®), cabozantinib (Cabometyx™), lenvatinib mesylate (Lenvima®), ipilimumab (Yervoy®)
- Leukemia: Tretinoin (Vesanoid®), imatinib mesylate (Gleevec®), dasatinib (Sprycel®), nilotinib (Tasigna®), bosutinib (Bosulif®), rituximab (Rituxan®), alemtuzumab (Campath®), ofatumumab (Arzerra®), obinutuzumab (Gazvva®), ibrutinib (Imbruvica®), idelalisib (Zvdelig®), blinatumomab (Blincyto®), venetoclax (Venclexta[™]), ponatinib hydrochloride (Iclusig[®]), midostaurin (Rydapt[®]), enasidenib mesylate (Idhifa[®]), inotuzumab ozogamicin (Besponsa®), tisagenlecleucel (Kymriah®), gemtuzumab ozogamicin (Mylotarg™), rituximab and hyaluronidase human (Rituxan Hycela™)
- Liver cancer: Sorafenib (Nexavar®), regorafenib (Stivarga®), nivolumab (Opdivo®)
- Lung cancer: Bevacizumab (Avastin®), crizotinib (Xalkori®), erlotinib (Tarceva®), gefitinib (Iressa®), afatinib dimaleate (Gilotrif®), ceritinib (LDK378/Zykadia™), ramucirumab (Cyramza®), nivolumab (Opdivo®), pembrolizumab (Keytruda®), osimertinib (Tagrisso™), necitumumab (Portrazza™), SARIAIHADANNO Mezolizumab (Tecentriq™), brigatinib (Alunbrig™), trametinib (Mekinist®), dabrafenib (Tafinlar®), durvalumab (Imfinzi™)


TUMOR AGNOSTIC FDA APPROVAL--- LAROTRECTINIB (NTRK FUSION)

Drilon et al. NEJM 2018;378:731-9.



FDA APPROVED November 26, 2018

Baseline

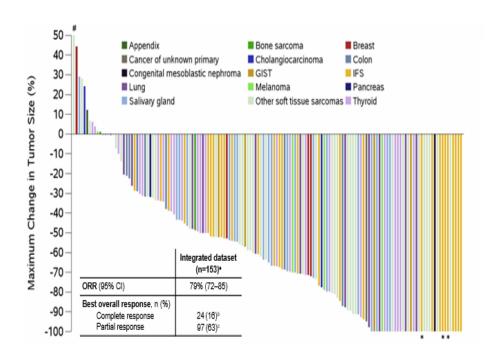
Cycle 4

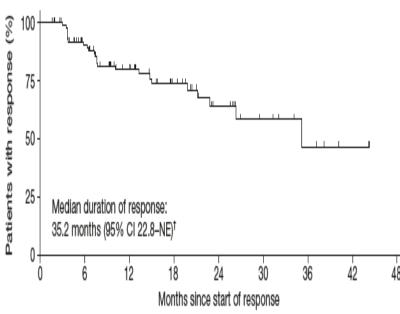
45F NSCLC & paraneoplastic hypertrophic osteoarthropathy

Prior therapy: platinum/pemetrexed

Larotrectinib ongoing in month 8, resolution of paraneoplastic symptoms

FDA APPROVED November 26, 2018

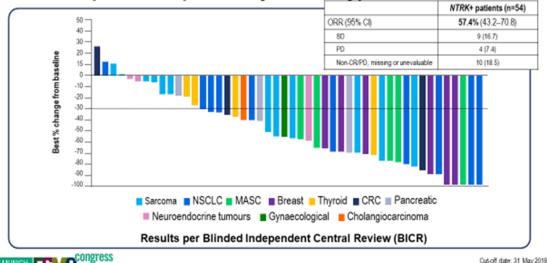

Day 6



Day 20

14F, prior therapy: 4 lines of chemotherapy and repeated resections
Treated with larotrectinib under expanded access

EXPANDED LAROTRECTINIB RESPONSE AND DURABILITY OF RESPONSE



TISSUE AGNOSTIC FDA APPROVAL--- ENTRECTINIB (NTRK FUSION)

FDA APPROVED August 15, 2019 Entrectinib activity in *NTRK* fusion-positive solid tumours: individual patient responses by tumour type

Note: Patients (n=6) without matched pre/post therapy scans were excluded from the plot CI: confidence interval; CRC: colorectal cancer; MASC: mammary analogue secretory carcinoma; NSCLC: non-small cell lung cancer

Demetri GD et al. ESMO 2018

Inside drugmakers' strategy to boost cancer medicines with 'Lazarus effect'

According to Dr. Brian Alexander, chief medical officer of Roche's gene testing company Foundation Medicine, only about 15% of U.S. patients with advanced cancers get comprehensive genomic profiling. Another 25% get single-gene testing, he said, and a large proportion "are not getting any testing at all."

At MD Anderson, which sees 100,000 new cancer patients a year, only around 10,000 eventually have their tumors sequenced.

September 7-10, 2019 | Barcelona, Spain

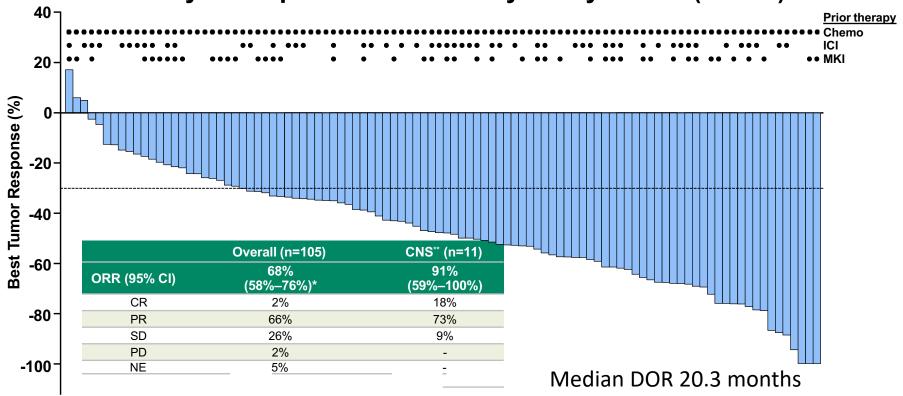
wclc2019.iaslc.com | #WCLC19

Conquering Thoracic Cancers Worldwide

Registrational Results of LIBRETTO-001: A Phase 1/2 Trial of Selpercatinib (LOXO-292) in Patients with *RET* Fusion-Positive Lung Cancers

A. Drilon¹, G. Oxnard², L. Wirth³, B. Besse⁴, O. Gautschi⁵, S.W.D. Tan⁶, H. Loong⁷, T. Bauer⁸, Y.J. Kim⁹, A. Horiike¹⁰, K. Park¹¹, M. Shah¹², C. McCoach¹³, L. Bazhenova¹⁴, T. Seto¹⁵, M. Brose¹⁶, N. Pennell¹⁷, J. Weiss¹⁸, I. Matos¹⁹, N. Peled²⁰, B.C. Cho²¹, Y. Ohe²², K. Reckamp²³, V. Boni²⁴, M. Satouchi²⁵, G. Falchook²⁶, W. Akerley²⁷, H. Daga²⁸, T. Sakamoto²⁹, J. Patel³⁰, N. Lakhani³¹, F. Barlesi³², M. Burkard³³, V. Zhu³⁴, V. Moreno Garcia³⁵, J. Medioni³⁶, M. Matrana³⁷, C. Rolfo³⁸, D.H. Lee³⁹, H. Nechushtan⁴⁰, M. Johnson⁴¹, V. Velcheti⁴², M. Nishio⁴³, R. Toyozawa⁴⁴, K. Ohashi⁴⁵, L. Song⁴⁶, J. Han⁴⁷, A. Spira⁴⁸, M.Duca⁴⁹, K. Staal Rohrberg⁵⁰, S. Takeuchi⁵¹, J. Sakakibara⁵², S. Waqar⁵³, H. Kenmotsu⁵⁴, F. Wilson⁵⁵, B.Nair⁵⁶, E. Olek⁵⁶, J. Kherani⁵⁶, K. Ebata⁵⁶, E. Zhu⁵⁶, M. Nguyen⁵⁶, L. Yang⁵⁶, X. Huang⁵⁶, S. Cruickshank⁵⁶, S. Rothenberg⁵⁶, B. Solomon⁵⁷, K. Goto⁵⁸, V. Subbiah⁵⁹

1.Memorial Sloan Kettering Cancer Center, New York, NYUnited States of America. 2. Dana-Farber Cancer Institute, Boston, MA/United States of America. 3. Massachusetts General Hospital, LuzerniSwitzerland. 6. National Cancer Centre, Singapore/Singapore. 7. Prince of Wales Hospital, Shatin/Hong Kong PRC. 8. Sarah Cannon Research Institute, Nashville, TN/United States of America. 9. Seoull National University gundary Hospital, Openograbid Democratic People's Republic of Korea. 10. The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo/Japan. 11. Samsung Medical Center, Seoul/Democratic People's Republic of Korea. 12. The Ohio State University, Columbus, OH/United States of America. 13. University of California, San Diego, Moores Cancer Center, La Jolla, CA/United States of America. 14. University of Pennsylvania, Philadelphia, PA/United States of America. 15. National Hospital Organization Kyushu Cancer Center, Fukuoka/Japan. 16. University of Pennsylvania, Philadelphia, PA/United States of America. 18. University of North Carolina, Chapel Hill, Nc/United States of America. 19. Vall d' Hebron Institute of Oncology, Barcelona/Spain. 20. Soroka Medical Center, Beer Sheva/Israel. 21. Severance Hospital, Yokyo/Japan. 20. City of Hope Comprehensive Cancer Center, Duarte, CA/United States of America. 24. START Madrid-ClOCC, Madrid/Spain. 25. Hyogo Cancer Center, Austria. 18. Vall Texas Accelerated Research Therapeutics (START) Midwest, Grand Rapids, MI/United States of America. 28. Osaka City General Hospital, Osaka/Japan. 29. Totroi University Hospital, Yonago/Japan. 30. University of Chicago, Li/United States of America. 31. South Texas Accelerated Research Therapeutics (START) Midwest, Grand Rapids, MI/United States of America. 33. University of Wiscosonin - Carbone Center, Madison, Wi/United States of America. 34. University of Madrid-Spain. 36. Hopital Europeen Georges Pompidou, ParisFrance. 37. Ochsner Clinic Foundation, New Orleans, La/United States of America. 38. Naiversity of Maryland


2019 World Conference on Lung Cancer

September 7-10, 2019 | Barcelona, Spain

wclc2019.iaslc.com | #WCLC19

Conquering Thoracic Cancers Worldwide

Efficacy of Selpercatinib: Primary Analysis Set (n=105)

Phase 1 Study Evaluating the Safety, Tolerability, Pharmacokinetics (PK) and Efficacy of AMG 510, a Novel Small Molecule KRAS^{G12C} Inhibitor, in **Advanced Solid Tumors**

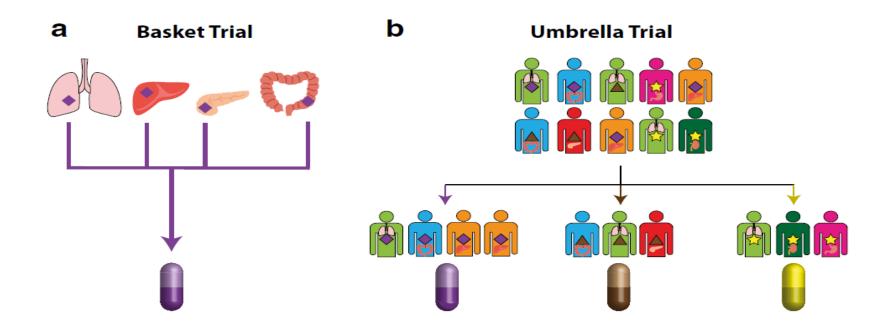
Marwan G Fakih, MD;¹ Bert Howard O'Neil, MD;² Timothy J Price, MBBS, FRACP;³ Gerald S Falchook, MD;⁵ Jayesh Desai, MBBS, FRACP;⁶ James Kuo, MBBS, FRACP;⁷ Ramaswamy Govindan, MD;8 Erik Rasmussen, MS;4 Phuong Khanh Morrow, MD;4 Jude Ngang, PharmD;⁴ Haby Henary, MD;⁴ David Hong, MD⁹

¹City of Hope, Duarte, CA, USA; ²Indiana University, Simon Cancer Center, Indianapolis, IN, USA; ³The Queen Elizabeth Hospital, Woodville South, AU; ⁴Amgen Inc, Thousand Oaks, CA, USA; ⁵Sarah Cannon Research Institute, Denver, CO, USA; ⁶Peter MacCallum Cancer Centre, Melbourne, AU; ⁷Scientia Clinical Research, Randwick, AU, ⁸Washington University, St Louis, MO, USA;

⁹MD Anderson Cancer Center, Houston, TX, USA

NSCLC: Best Tumor Response* (n=10)

IASLC 2019 World Conference on Lung Cancer UPDATE


N = 23 DCR = 96% PR 11/23 (48%); SD 11/23; PD 1/23

> RP2D N = 13 PR 7/13 (54%); SD 6/13

> > Govindan et al. Abstract OA.02.02

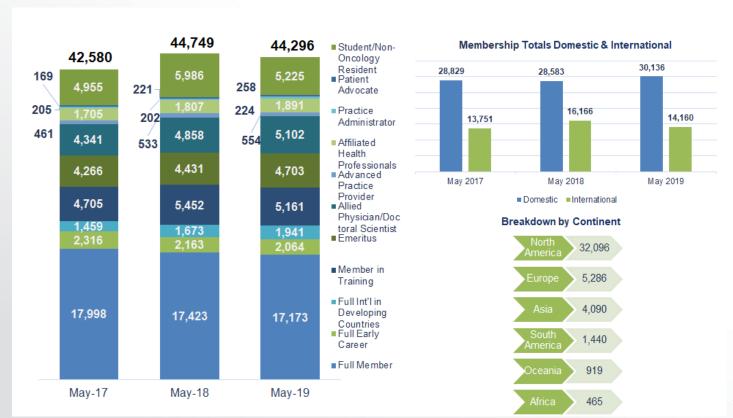
- * Based officer radiographic scans every o weeks using Kesist 1.1 citien
- 1 patient had clinical progression prior to week 6 and is not on this graph
- Confirmed response
- ‡ 2 additional patients had confirmed PR post data cutoff
- §Patient had a CR of the target lesions at week 18, post data cutoff

NEXT GENERATION GENOMIC TRIAL DESIGNS

ASCO TAPUR TRIAL: 120 LOCATIONS, 22 STATES

TAPUR STUDY ARM UPDATES

DRUG	TUMOR TYPE	VARIANT	SIGNAL
Palbociclib	Gallbladder/biliary	CDKN2A mutation/loss	
Palbociclib	Pancreas	CDKN2A mutation/loss	
Cetuximab	Breast	KRAS, NRAS, BRAF wt	_
Cetuximab	NSCLC	KRAS, NRAS, BRAF wt	
Sunitinib	Colorectal	FLT3 mutation/amp	_
Palbociclib	NSCLC	CDKN2A mutation/loss	+
Pembrolizumab	Breast/Colorectal	High TMB	•
Pertuzumab + Trastuzumab	Colorectal	ERBB2 amplification	+
Vemurafenib + Cobimetinib	Colorectal	BRAF V600E/D/K/R mut	•



WHO BENEFITS IF THE TAPUR TRIAL SUCCEEDS?

- Patients receive targeted agent matched to tumor genomic profile; drugs at no cost
- Physicians receive guidance in interpretation of genomic test results and treatment options, access to drugs, clinical data on off-label use
- Pharma receives data on drug use and outcomes to inform R&D plans and life cycle management
- Payers receive data on test and drug use and outcomes to inform future coverage decisions
- Regulators receive data on extent and outcomes of off label drug and test use and real world safety data

ASCO's Membership Is Stable & Global

2019 Meeting Data

Attendance

2019 AM Registration Report	2019	2018	2017
Total Attendees	> 42000	39401	38004
Professional Attendees	> 34000	32011	31023

Abstracts

- 6,205 submissions
- 3,046 International/3,159 Domestic (49%/51%)
- 2,450 accepted: (260 oral, 2190 poster +/discussion)
- 3,265 online publication only

Opening Session: Educate and Connect

"[To our patients]...thank you for giving us the honour of sharing a very difficult process...thank you for being our greatest teachers."

Edmond Ang, MBBCh, MRCP tells the incredible story of Chemoboy and the patients who inspire him.

At the @ASCO #OpeningSession #ASCO19

Photo Credit: Meeting Attendee

Highlight of the day was hearing @Atul_Gawande stress the importance of asking patients what their #goals are. It's of the utmost importance in oncology!

#ASCO19 #compassionatecare

Photo Credit: Meeting Attendee

Affordable Care Act Medicaid Expansion Impact on Racial Disparities in Time to Cancer Treatment

Blythe Adamson¹; Aaron Cohen¹; Melissa Estévez¹; Kelly Magee¹; Erin Williams¹; Cary Gross²; Neal Meropol¹; Amy Davidoff²

¹ Flatiron Health, Inc. | ² Yale University

#ASCO19
Slides are the property of the author, permission required for reuse.

OVERALL SURVIVAL (OS) RESULTS OF A PHASE III RANDOMIZED TRIAL OF STANDARD OF CARE THERAPY WITH OR WITHOUT ENZALUTAMIDE FOR METASTATIC HORMONE SENSITIVE PROSTATE CANCER (mHSPC)

ENZAMET (ANZUP 1304):
AN ANZUP-LED INTERNATIONAL CO-OPERATIVE GROUP TRIAL
(NHMRC CTC, CCTG, CTI, DFCI)

Christopher Sweeney, Andrew Martin, Robert Zielinski, Alastair Thomson, Thean Hsiang Tan, Shahneen Sandhu, M. Neil Reaume, David Pook, Francis Parnis, Scott North, Gavin Marx, John McCaffrey, Ray McDermott, Nicola Lawrence, Lisa Horvath, Mark Frydenberg, Simon Chowdhury, Kim Chi, Martin Stockler, Ian Davis

ANNOUNCE: A randomized, placebo-controlled, double-blind, phase 3 trial of doxorubicin + olaratumab vs doxorubicin + placebo in patients with advanced soft tissue sarcomas

<u>William D. Tap</u>, Andrew J. Wagner, Zsuzsanna Papai, Kristen Ganjoo, Chueh-Chan Yen, Patrick Schöffski, Albiruni Razak, Javier Martin Broto, Alexander Spira, Akira Kawai, Anders Krarup-Hansen, Axel Le Cesne, Brian A. Van Tine, Yoichi Naito, Se Hoon Park, Victoria Soldatenkova, Gary Mo, Ashwin Shahir, Jennifer Wright, Robin L. Jones

On behalf of the ANNOUNCE investigators

Olaparib as maintenance treatment following first-line platinum-based chemotherapy in patients with a germline BRCA mutation and metastatic pancreatic cancer: Phase III POLO trial

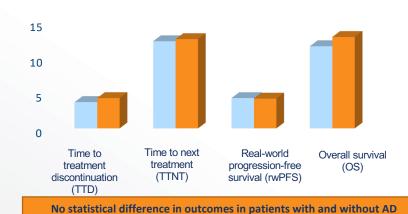
Hedy L Kindler,¹ Pascal Hammel,² Michele Reni,³ Eric Van Cutsem,⁴ Teresa Macarulla,⁵ Michael J Hall,⁶ Joon Oh Park,⁷ Daniel Hochhauser,⁸ Dirk Arnold,⁹ Do-Youn Oh,¹⁰ Anke Reinacher-Schick,¹¹ Giampaolo Tortora,¹² Hana Algül,¹³ Eileen M O'Reilly,¹⁴ David McGuinness,¹⁵ Karen Y Cui,¹⁶ Katia Schlienger,¹⁷ Gershon Y Locker,¹⁶ Talia Golan¹⁸

¹The University of Chicago, Chicago, IL, USA; ²Hôpital Beaujon (AP-HP), Clichy and University Paris VII, Paris, France; ³IRCCS Ospedale, San Raffaele Scientific Institute, Milan, Italy; ⁴University Hospitals Gasthuisberg and KU Leuven, Leuven, Belgium; ⁵Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology, Barcelona, Spain; ⁶Fox Chase Cancer Center, Philadelphia, PA, USA; ⁷Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; ⁸University College London Cancer Institute, London, UK; ⁹Asklepios Tumorzentrum Hamburg AK Altona, Hamburg, Germany; ¹⁰Seoul National University Hospital, Seoul, South Korea; ¹¹St Josef-Hospital, Ruhr University Bochum, Bochum, Germany; ¹²Azienda Ospedaliera Universitaria Integrata Verona, Verona and Fondazione Policlinico Universitario Genelli IRCCS, Rome, Italy; ¹³Klinikum Rechts der Isar, Department of Internal Medicine II, Technische Universität München, Munich, Germany; ¹⁴Memorial Sloan Kettering Cancer Center, New York, NY, USA; ¹²AstraZeneca, Cambridge, UK; ¹⁶AstraZeneca, Gaithersburg, MD, USA; ¹⁷Merck & Co, Inc, Kenilworth, NJ, USA; ¹⁸The Oncology Institute, Sheba Medical Center at Tel-Hashomer, Tel Aviv University, Islaviv, Israel

ClinicalTrials.gov identifier: NCT02184195. This study was sponsored by AstraZeneca and is part of an alliance between AstraZeneca and Merck Sharp & Dohme Corp, a subsidiary of Merck & Co, Inc, Kenilworth, NJ, USA (MSD)

FDA-CLQ AM19 Abstracts - Oral Presentations

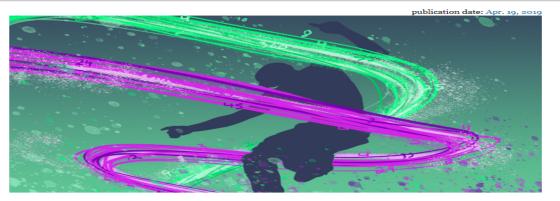
1. Impact of broadening clinical trial eligibility criteria for advanced non-small cell lung cancer patients: Real-world analysis


Harvey et al., ASCO Annual Meeting 2019, Abstract # LBA108

Original Cohort	10,500 (100%)		
Traditional Exclusions			
Pts excluded for brain mets	2,226 (21.2%)		
Pts excluded for prior/concurrent malignancy	2,254 (21.5%)		
Pts excluded for CrCl < 60 mL/min	1,509 (14.4%)		
Total pts included by traditional criteria	5,495 (52.3%)		
Pts excluded by 1 of 3 traditional criteria	5,005 (47.7%)		
Expanded Criteria (Permits brain mets and prior/concurrent malignancy)			
Using expanded clinical trial eligibility criteria would enable ~2x # of advanced NSCLC pts to consider trial participation			
•			

2. Real-world outcomes of patients w/ advanced NSCLC receiving immune checkpoint inhibitors w/ and w/o autoimmune disease (AD)

Khozin et al., ASCO Annual Meeting 2019, Abstract # 9110


Evidence of Autoimmune Disease...

THE CANCER LETTER

Inside information on cancer research and drug development

Real World Evidence

How FDA, Pfizer, and Flatiron Health did it

Approval of Ibrance for men affords a glance at use of real world data

By Paul Goldberg

Real world data played a role in FDA's recent decision to expand the indications for Pfizer's drug Ibrance (palbociclib) to include men.

On April 4, Ibrance joined the ranks of cancer drugs that were approved partly based on data extracted from electronic medical records and other data related to actual experience with the drug, as opposed to clinical studies. Approvals relying on such data have been occurring infrequently, and it appears that they haven't been analyzed systematically.

ASCO Research Priorities Identified

- Identify strategies that better predict response to immunotherapies
- Better define the patient populations that benefit from post-operative (adjuvant) therapy
- Translate innovations in cellular therapies for hematological malignancies to solid tumors
- Increase precision medicine research and treatment approaches in pediatric cancers
- Optimize care for older adults with cancer
- Increase equitable access to cancer clinical trials
- Reduce the long-term consequences of cancer treatment
- Reduce obesity's impact on cancer incidence and outcomes
- Identify strategies to detect and treat premalignant lesions

UNITE AND CONQUER: ACCELERATING PROGRESS TOGETHER

Bridging Gaps and Connecting People to Find a Better Way

Scientific Program Chair Melissa Johnson, MD Sarah Cannon

Education Program Chair Tatiana Prowell, MD FDA/Johns Hopkins

ASCO 2020 - UNITE AND CONQUER: ACCELERATING PROGRESS TOGETHER

- Bringing together stakeholders
 (physicians, patients, nurses, pharma, regulators, payers, scientists)
- Leading research initiatives (eligibility, access, profiling, etc.)
- Expanding our membership
- Being the preeminent cancer meeting

Drug Pricing

"One of my greatest priorities is to reduce the price of prescription drugs."

PRESIDENT DONALD J. TRUMP

Drug Pricing Blueprint

HHS has identified four key strategies for reform:

Competition

Lower drug prices and increase innovation through more competition

Seniors

Give Medicare Part D plans tools to negotiate lower prices for seniors

Incentives

Develop incentives for drug makers to lower their list prices

More Options

Offer more drug options, which will lower out-of-pocket spending

Congress' Potential Fall Agenda

- Healthcare:
 - Drug pricing
 - Appropriations
 - Surprise medical billing
 - E-cigarettes
- Outside healthcare:
 - Impeachment
 - Gun control
 - Trade deals
 - Surveillance issues
 - National Defense Authorization Act

What ASCO Has Supported

- Price Transparency: Allowing greater transparency on all aspects of drug pricing
- Pay for delay/evergreening/product hopping: Preventing manufacturers from participating in anti-competitive behaviors
- Reducing Market Exclusivity: Reducing the time it takes before a generic/biosimilar can enter the market
- Patient Out of Pocket Maximums in Part D

Where ASCO Has Raised Concerns

- Policy changes that could negatively impact cancer patients and Medicare Part B drug reimbursement:
 - Including value of coupons in the determination of Average Sales Price
 - Establishing a Maximum Add-on Payment for Part B drugs

THANK YOU